Square inches or cm are AREA measurements, as is an acre. But, if square inches are multiplied by another inch (or cm), the resulting unit is a CUBIC inch, which is a unit of volume, just like gallons, liters, etc. This volume unit is what is needed to calculate run off. Since cubic inches do not translate into gallons, we must convert inches to cm, cm to liters, then liters to gallons.

Example: Conversions:
1) 1 inch = 2.54 cm
2) 1 cubic inch = (2.54 cm)³
3) 1 cm³ = 1 ml
4) 1000 ml = 1 liter
5) 1 gallon = 3.8 liters
6) 1 foot = 12 inches

EXAMPLE of how to use conversion factors:
96 eggs = ? dozen
We know that 12 eggs = 1 dozen
96 eggs x 1 dozen = In this step, the "eggs" unit will cancel out, leaving the "dozen" unit
1 = 12 eggs
96 dozen = 8 dozen
12

Data for Williams, Arizona:
Williams, AZ has an annual average rainfall of about 22.3 inches.
The average ground absorption rate is 50%.
The average shopping mall and surrounding parking areas is 25 acres.
1 acre = 43,560 feet (208 feet x 208 feet)

Converting

Step 1: Convert inches of rain into centimeters of rain
_________________ inches per year of rain x 2.54 centimeters = ______________cm of rain per year

Step 2: Converting acres into cm²
acres x 43650 ft² x (conversion #6)² x (conversion #1)² = # cm²
_________________ acres x 43650 ft² /1acre x (12 inches/1ft)² x (2.54 cm/1 inch)² =
_________________ cm²

Step 3: Finding the volume in centimeter and in milliliters
Step 1 answer x Step 2 answer
Step 4: Converting cm³ to liters
Step 3 answer x conversion 3 x conversion 4 = liters
 cm³ x 1ml/cm³ x 1 liter/1000 ml = __________________________ liters

Step 5: Converting liters to gallons
Step 4 answer x conversion 5 = # gallons
 liters x 1 gallon/3.8 liters = __________________________ gallons

Step 6: Finding the absorption amount
Step 5 answer x percent absorption = # gallons lost to runoff
 _______ gallons x 50% absorption = __________________________ gallons

My Local Area Runoff

Step 1: Convert inches of rain into centimeters of rain
 inches per year of rain x 2.54 centimeters = __________________________ cm of rain
 per year

Step 2: Converting acres into cm²
 # acres x 43650 ft² x (conversion #6)² x (conversion #1)² = # cm²
 _______ acres x 43650 ft² /1acre x (12 inches/1ft)² x (2.54 cm/1 inch)² =
 __________________________ cm²

Step 3: Finding the volume in centimeter and in milliliters
Step 1 answer x Step 2 answer
 __________ cm x __________ cm² = __________________________ cm³, which is the
 same as milliliters.

Step 4: Converting cm³ to liters
Step 3 answer x conversion 3 x conversion 4 = liters
 __________ cm³ x 1ml/cm³ x 1 liter/1000 ml = __________________________ liters

Step 5: Converting liters to gallons
Step 4 answer x conversion 5 = # gallons
 __________ liters x 1 gallon/3.8 liters = __________________________ gallons
Step 6: Finding the absorption amount

Step 5 answer x percent absorption = # gallons lost to runoff

_________ gallons x 50% absorption = _______________________ gallons

Conclusion Questions:

Is your runoff greater or lesser than the runoff calculated in the example used in the Converting section of your worksheet? ______________________

How many malls can you think of that are located in your area? __________
Multiply this times the runoff amount and put that answer here:__________________________

Now, add in other shopping centers, businesses, roads, and GUESS how many MORE gallons are lost in this area: ________________________________ (your answer may be different from other students)

Consider that most malls, shopping centers, office parks, etc., have empty stores or offices.
What could we do to reduce the number or area of parking lots and buildings? __________

What else could we do to increase the amount of water absorption from rainfall?

Explain why urban areas are more likely to have a water shortage than farmlands, even though farms use about the same amount of water.

How would the absorption rate be different if we had a different type of soil? Be specific.

What else could we do as a society to decrease the amount of land we use for building, while still not compromising the need to grow as populations increase?
Square inches or cm are AREA measurements, as is an acre. But, if square inches are multiplied by another inch (or cm), the resulting unit is a CUBIC inch, which is a unit of volume, just like gallons, liters, etc. This volume unit is what is needed to calculate run off. Since cubic inches do not translate into gallons, we must convert inches to cm, cm to liters, then liters to gallons.

Example: Conversions:
1) 1 inch = 2.54 cm
2) 1 cubic inch = (2.54 cm)3
3) 1 cm3 = 1 ml
4) 1000 ml = 1 liter
5) 1 gallon = 3.8 liters
6) 1 foot = 12 inches

EXAMPLE of how to use conversion factors:
96 eggs =? dozen
We know that 12 eggs = 1 dozen
96 eggs x 1 dozen = In this step, the “eggs” unit will cancel out, leaving the “dozen” unit
1 = 12 eggs
96 dozen = 8 dozen
12

Data for Williams, Arizona:
Williams, AZ has an annual average rainfall of about 22.3 inches.
The average ground absorption rate is 50%.
The average shopping mall and surrounding parking areas is 25 acres.
1 acre = 43,560 feet (208 feet x 208 feet)

Converting Answers using Williams data

Step 1: Convert inches of rain into centimeters of rain

\[\frac{22.3}{1} \text{ inches per year of rain} \times 2.54 \text{ centimeters} = \frac{56.64}{1} \text{ centimeters of rain per year} \]

Step 2: Converting acres into cm²

\[\frac{25}{1} \text{ acres} \times 43650 \text{ ft}^2 /1 \text{ acre} \times (12 \text{ inches} /1 \text{ ft})^2 \times (2.54 \text{ cm} /1 \text{ inch})^2 = \frac{33,261,300}{1} \text{ cm}^2 \]

Step 3: Finding the volume in centimeter and in milliliters

Step 1 answer x Step 2 answer
56.6 cm x 33,261,300 cm² = 1,882,572.6 cm³, which is the same as milliliters.

Step 4: Converting cm³ to liters
Step 3 answer x conversion 3 x conversion 4 = liters

1,882,572.6 cm³ x 1 ml/cm³ x 1 liter/1000 ml = 1882.5726 liters

Step 5: Converting liters to gallons
Step 4 answer x conversion 5 = # gallons

1882.5726 liters x 1 gallon/3.8 liters = 495.4138 gallons

Step 6: Finding the absorption amount
Step 5 answer x percent absorption = # gallons lost to runoff

495.4138 gallons x 50% absorption = 247.7069 gallons lost to runoff

My Local Area Runoff Answers will vary upon your location

Step 1: Convert inches of rain into centimeters of rain

Inches per year of rain x 2.54 centimeters = cm of rain per year

Step 2: Converting acres into cm²

acres x 43650 ft² x (conversion #6)² x (conversion #1)² = cm²

acres x 43650 ft² /1acre x (12 inches/1ft)² x (2.54 cm/1 inch)² = cm²

Step 3: Finding the volume in centimeter and in milliliters

Step 1 answer x Step 2 answer

cm x cm² = cm³, which is the same as milliliters.

Step 4: Converting cm³ to liters

Step 3 answer x conversion 3 x conversion 4 = liters

cm³ x 1ml/cm³ x 1 liter/1000 ml = liters

Step 5: Converting liters to gallons

Step 4 answer x conversion 5 = # gallons

liters x 1 gallon/3.8 liters = gallons
Step 6: Finding the absorption amount

Step 5 answer x percent absorption = # gallons lost to runoff
_______ gallons x 50% absorption = __________________________ gallons

Conclusion Questions: Answers will vary due to your location.

Is your runoff greater or lesser than the runoff calculated in the example used in the Converting section of your worksheet? __________________________

How many malls can you think of that are located in your area? __________
Multiply this times the runoff amount and put that answer here: __________________

Now, add in other shopping centers, businesses, roads, and GUESS how many MORE gallons are lost in this area: __________________________ (your answer may be different from other students)

Consider that most malls, shopping centers, office parks, etc., have empty stores or offices.

What could we do to reduce the number or area of parking lots and buildings?

What else could we do to increase the amount of water absorption from rainfall?

Explain why urban areas are more likely to have a water shortage than farmlands, even though farms use about the same amount of water.

How would the absorption rate be different if we had a different type of soil? Be specific.

What else could we do as a society to decrease the amount of land we use for building, while still not compromising the need to grow as populations increase?
You will need to measure the base of your house and any driveways, storage building, etc., that would keep water from soaking into your ground. Then you need to measure the total size of your lot. If you live in a multifamily dwelling (example: an apartment), approximate the size of the land in the complex that would be your yard.) Then you need to calculate how much of an acre your yard would be.

My House Runoff

Step 1: Convert inches of rain into centimeters of rain

___________ inches per year of rain × 2.54 centimeters = ____________ cm of rain per year

Step 2: Converting acres into cm²

acres × 43650 ft² × (conversion #6)² × (conversion #1)² = # cm²

_________ acres × 43650 ft² /1acre x (12 inches/1ft)² x (2.54 cm/1 inch)² = ______________ cm²

Step 3: Finding the volume in centimeter and in milliliters

Step 1 answer × Step 2 answer

__________ cm × __________ cm² = __________________________ cm³, which is the same as milliliters.

Step 4: Converting cm³ to liters

Step 3 answer × conversion 3 × conversion 4 = liters

___________ cm³ × 1ml/cm³ × 1 liter/1000 ml = __________________________ liters

Step 5: Converting liters to gallons

Step 4 answer × conversion 5 = # gallons

__________ liters × 1 gallon/3.8 liters = __________________________ gallons

Step 6: Finding the absorption amount

Step 5 answer × percent absorption = # gallons lost to runoff

________ gallons × 50% absorption = __________________________ gallons

Is your runoff greater or lesser than the runoff calculated in the My Local Area Runoff section of your worksheet? _____________________
Homework—My House Answer Key
You will need to measure the base of your house and any driveways, storage building, etc., that would keep water from soaking into your ground. Then you need to measure the total size of your lot. If you live in a multifamily dwelling (example: an apartment), approximate the size of the land in the complex that would be your yard.) Then you need to calculate how much of an acre your yard would be.

My House Runoff Answers will vary due to location

Step 1: Convert inches of rain into centimeters of rain
_____________ inches per year of rain x 2.54 centimeters = ___________cm of rain
per year

Step 2: Converting acres into cm²
acres x 43650 ft² x (conversion #6)^₂ x (conversion #1)^₂ = # cm²
_________ acres x 43650 ft² /1acre x (12 inches/1ft)^² x (2.54 cm/1 inch)^² =
__________________ cm²

Step 3: Finding the volume in centimeter and in milliliters
Step 1 answer x Step 2 answer
_________ cm x ________ cm² = __________________________ cm³, which is the
same as milliliters.

Step 4: Converting cm³ to liters
Step 3 answer x conversion 3 x conversion 4 = liters
___________ cm³ x 1ml/cm³ x 1 liter/1000 ml = __________________________ liters

Step 5: Converting liters to gallons
Step 4 answer x conversion 5 = # gallons
_______________ liters x 1 gallon/3.8 liters = __________________________ gallons

Step 6: Finding the absorption amount
Step 5 answer x percent absorption = # gallons lost to runoff
_________ gallons x 50% absorption = __________________________ gallons

Is your runoff greater or lesser than the runoff calculated in the My Local Area Runoff section of your worksheet? ________________________
1. In a short paragraph (5-8 sentences) compare your home location to that of Williams, Arizona. Which environment has more rain? Which environment has more gallons lost to runoff? What are some ways that runoff could be decreased in both environments? Why is it important to have more water becoming part of our groundwater?

2. Describe the invention that you and your partner designed (or another classmate designed that you think it a better idea) to decrease the amount of runoff from a residential or commercial site. Be sure to explain how it would work to reclaim and conserve water.